ELIZA cgi-bash version rev. 1.90
- Medical English LInking keywords finder for the PubMed Zipped Archive (ELIZA) -

return kwic search for growth out of >500 occurrences
309169 occurrences (No.70 in the rank) during 5 years in the PubMed. [cache]
173) Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth.
--- ABSTRACT ---
PMID:23868727 DOI:10.1002/mc.22070
2015 Molecular carcinogenesis
* Inhibition of FAK and VEGFR-3 binding decreases tumorigenicity in neuroblastoma.
- Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. Vascular endothelial growth factor receptor-3 (VEGFR-3), another tyrosine kinase, has also been found to be important in the development of many human tumors including neuroblastoma. Recent reports have found that FAK and VEGFR-3 interact, and we have previously shown that both of these kinases interact in neuroblastoma. We have hypothesized that interruption of the FAK-VEGFR-3 interaction would lead to decreased neuroblastoma cell survival. In the current study, we examined the effects of a small molecule, chloropyramine hydrochloride (C4), designed to disrupt the FAK-VEGFR-3 interaction, upon cellular attachment, migration, and survival in two human neuroblastoma cell lines. We also utilized a murine xenograft model to study the impact of C4 upon tumor growth. In these studies, we showed that disruption of the FAK-VEGFR-3 interaction led to decreased cellular attachment, migration, and survival in vitro. In addition, treatment of murine xenografts with chloropyramine hydrochloride decreased neuroblastoma xenograft growth. Further, this molecule acted synergistically with standard chemotherapy to further decrease neuroblastoma xenograft growth. The findings from this current study help to further our understanding of the regulation of neuroblastoma tumorigenesis, and may provide novel therapeutic strategies and targets for neuroblastoma and other solid tumors of childhood.
--- ABSTRACT END ---
[
right
kwic]
[frequency of next (right) word to growth]
(1)69 and (12)5 at (25)3 models (36)2 model
(2)48 factor (13)4 but (26)3 or (37)2 modeling
(3)48 of (14)4 during (27)3 traits (38)2 outcomes
(4)41 *null* (15)4 factor, (28)3 trajectories (39)2 phase
(5)32 in (17)4 patterns (29)2 among (40)2 properties
(6)25 factors (18)4 plate (30)2 are (41)2 responses
(7)9 inhibition (19)4 response (31)2 as (42)2 restriction
(8)8 rate (20)4 was (32)2 dynamics (43)2 stunting
(9)6 factors, (21)3 cone (33)2 effects (44)2 to
(10)6 rates (22)3 curve (34)2 forest (45)2 velocities
(11)5 arrest (23)3 factor-C (35)2 hormone (46)2 were

add keyword

--- WordNet output for growth --- =>茂み, 成長, 増加, 発展, 栽培, 腫よう, 成長物 Overview of noun growth The noun growth has 7 senses (first 5 from tagged texts) 1. (37) growth, growing, maturation, development, ontogeny, ontogenesis -- ((biology) the process of an individual organism growing organically; a purely biological unfolding of events involved in an organism changing gradually from a simple to a more complex level; "he proposed an indicator of osseous development in children") 2. (20) growth -- (a progression from simpler to more complex forms; "the growth of culture") 3. (3) increase, increment, growth -- (a process of becoming larger or longer or more numerous or more important; "the increase in unemployment"; "the growth of population") 4. (3) growth -- (vegetation that has grown; "a growth of trees"; "the only growth was some salt grass") 5. (1) emergence, outgrowth, growth -- (the gradual beginning or coming forth; "figurines presage the emergence of sculpture in Greece") 6. growth -- ((pathology) an abnormal proliferation of tissue (as in a tumor)) 7. growth -- (something grown or growing; "a growth of hair") --- WordNet end ---