ELIZA cgi-bash version rev. 1.90
- Medical English LInking keywords finder for the PubMed Zipped Archive (ELIZA) -

return kwic search for growth out of >500 occurrences
309169 occurrences (No.70 in the rank) during 5 years in the PubMed. [no cache] 500 found
25) This challenge is hindered by the scarcity of tissue biopsies and the absence of standardized evaluation tools, but can be negated through non-invasive assessment of growth and integration, with reduced sample size and low cost.
--- ABSTRACT ---
PMID:23956239 DOI:10.1002/term.1801
2015 Journal of tissue engineering and regenerative medicine
* Future role of MR elastography in tissue engineering and regenerative medicine.
- Tissue engineering (TE) has been introduced for more than 25 years without a boom in clinical trials. More than 70 TE-related start-up companies spent more than $600 million/year, with only two FDA-approved tissue-engineered products. Given the modest performance in clinically approved organs, TE is a tenaciously promising field. The TE community is advocating the application of clinically driven methodologies in large animal models enabling clinical translation. This challenge is hindered by the scarcity of tissue biopsies and the absence of standardized evaluation tools, but can be negated through non-invasive assessment of growth and integration, with reduced sample size and low cost. Solving this issue will speed the transition to cost-efficient clinical studies. In this paper we: (a) introduce magnetic resonance elastography to the tissue-engineering and regenerative medicine (TERM) community; (b) review recent MRE applications in TERM; and (c) discuss future directions of MRE in TERM. We have used MRE to study engineered tissues both in vitro and in vivo, where the mechanical properties of mesenchymally derived constructs were progressively monitored before and after tissues were implanted in mouse models. This study represents a stepping stone toward the applications of MRE in directing clinical trials with low cost and likely expediting the translation to more relevantly large animal models and clinical trials.
--- ABSTRACT END ---
[
right
kwic]
[frequency of next (right) word to growth]
(1)69 and (12)5 at (25)3 models (36)2 model
(2)48 factor (13)4 but (26)3 or (37)2 modeling
(3)48 of (14)4 during (27)3 traits (38)2 outcomes
(4)41 *null* (15)4 factor, (28)3 trajectories (39)2 phase
(5)32 in (17)4 patterns (29)2 among (40)2 properties
(6)25 factors (18)4 plate (30)2 are (41)2 responses
(7)9 inhibition (19)4 response (31)2 as (42)2 restriction
(8)8 rate (20)4 was (32)2 dynamics (43)2 stunting
(9)6 factors, (21)3 cone (33)2 effects (44)2 to
(10)6 rates (22)3 curve (34)2 forest (45)2 velocities
(11)5 arrest (23)3 factor-C (35)2 hormone (46)2 were

add keyword

--- WordNet output for growth --- =>茂み, 成長, 増加, 発展, 栽培, 腫よう, 成長物 Overview of noun growth The noun growth has 7 senses (first 5 from tagged texts) 1. (37) growth, growing, maturation, development, ontogeny, ontogenesis -- ((biology) the process of an individual organism growing organically; a purely biological unfolding of events involved in an organism changing gradually from a simple to a more complex level; "he proposed an indicator of osseous development in children") 2. (20) growth -- (a progression from simpler to more complex forms; "the growth of culture") 3. (3) increase, increment, growth -- (a process of becoming larger or longer or more numerous or more important; "the increase in unemployment"; "the growth of population") 4. (3) growth -- (vegetation that has grown; "a growth of trees"; "the only growth was some salt grass") 5. (1) emergence, outgrowth, growth -- (the gradual beginning or coming forth; "figurines presage the emergence of sculpture in Greece") 6. growth -- ((pathology) an abnormal proliferation of tissue (as in a tumor)) 7. growth -- (something grown or growing; "a growth of hair") --- WordNet end ---