ELIZA cgi-bash version rev. 1.91
- Medical English LInking keywords finder for the PubMed Zipped Archive (ELIZA) -
return
kwic search for functional out of >500 occurrences
267449 occurrences (No.100 in the rank) during 5 years in the PubMed. [cache]
127) To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury.
* Compensatory functional connectome changes in a rat model of traumatic brain injury.
- Penetrating cortical impact injuries alter neuronal communication beyond the injury epicentre, across regions involved in affective, sensorimotor and cognitive processing. Understanding how traumatic brain injury reorganizes local and brain wide nodal interactions may provide valuable quantitative parameters for monitoring pathological progression and recovery. To this end, we investigated spontaneous fluctuations in the functional MRI signal obtained at 11.1 T in rats sustaining controlled cortical impact and imaged at 2- and 30-days post-injury. Graph theory-based calculations were applied to weighted undirected matrices constructed from 12 879 pairwise correlations between functional MRI signals from 162 regions. Our data indicate that on Days 2 and 30 post-controlled cortical impact there is a significant increase in connectivity strength in nodes located in contralesional cortical, thalamic and basal forebrain areas. Rats imaged on Day 2 post-injury had significantly greater network modularity than controls, with influential nodes (with high eigenvector centrality) contained within the contralesional module and participating less in cross-modular interactions. By Day 30, modularity and cross-modular interactions recover, although a cluster of nodes with low strength and low eigenvector centrality remain in the ipsilateral cortex. Our results suggest that changes in node strength, modularity, eigenvector centrality and participation coefficient track early and late traumatic brain injury effects on brain functional connectivity. We propose that the observed compensatory functional connectivity reorganization in response to controlled cortical impact may be unfavourable to brain wide communication in the early post-injury period.
=>機能の, 関数の, 機能する, 機能上の, 実用的な, 機能的な
Overview of adj functional
The adj functional has 6 senses (first 2 from tagged texts)
1. (3) functional -- (designed for or capable of a particular function or use; "a style of writing
in which every word is functional"; "functional architecture")
2. (1) functional -- (involving or affecting function rather than physiology; "functional deafness")
3. functional -- (relating to or based on function especially as opposed to structure; "the problem
now is not a constitutional one; it is a functional one"; "delegates elected on a functional rather
than a geographical basis")
4. functional, usable, useable, operable, operational -- (fit or ready for use or service; "the
toaster was still functional even after being dropped"; "the lawnmower is a bit rusty but still
usable"; "an operational aircraft"; "the dishwasher is now in working order")
5. functional -- (designed for or adapted to a function or use; "functional education selects
knowledge that is concrete and usable rather than abstract and theoretical"; "functional
architecture")
6. running, operative, functional, working -- ((of e.g. a machine) performing or capable of
performing; "in running (or working) order"; "a functional set of brakes")
--- WordNet end ---