ELIZA cgi-bash version rev. 1.90
- Medical English LInking keywords finder for the PubMed Zipped Archive (ELIZA) -

return kwic search for growth out of >500 occurrences
309169 occurrences (No.70 in the rank) during 5 years in the PubMed. [no cache] 500 found
136) In this study, we tested human amniotic fluid mesenchymal stem cells (AFMSCs) as feeder cells to support the growth of hESCs.
--- ABSTRACT ---
PMID:23460275 DOI:10.1002/term.1702
2015 Journal of tissue engineering and regenerative medicine
* The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines.
- Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to differentiate into the three germ layers and possibly all tissues of the human body. To fulfil the clinical potentials for cell-based therapy, banks of hESC lines that express different combinations of the major histocompatibility genes should be established, preferably without exposing such cells to animal cells and proteins. In this study, we tested human amniotic fluid mesenchymal stem cells (AFMSCs) as feeder cells to support the growth of hESCs. Our results indicated that mitomycin-treated AFMSCs were able to support the newly established hESC lines CGLK-1 and CGLK-2. The hESC colonies cultured on AFMSCs expressed alkaline phosphatase (ALK-P), SSEA-4, TRA-1-60, TRA-1-81, Oct-4, Nanog and Sox-2, which are markers for undifferentiated hESCs. Chromosomal analyses of both hESC lines, CGLK-1 and CGLK-2, which were cultured on AFMSC feeders for 22 and 14 passages, respectively, were confirmed to be normal karyotypes (46, XX). The ability of AFMSCs as feeder cells to maintain the undifferentiated growth and pluripotency of hESCs was confirmed by in vivo formation of teratomas derived on AFMSC hESCs in severe combined immune-compromised mice. The use of AFMSCs for feeder cells to culture hESCs has several advantages, in that AFMSCs are not tumourigenic and can be expanded extensively with a short doubling time.
--- ABSTRACT END ---
[
right
kwic]
[frequency of next (right) word to growth]
(1)69 and (12)5 at (25)3 models (36)2 model
(2)48 factor (13)4 but (26)3 or (37)2 modeling
(3)48 of (14)4 during (27)3 traits (38)2 outcomes
(4)41 *null* (15)4 factor, (28)3 trajectories (39)2 phase
(5)32 in (17)4 patterns (29)2 among (40)2 properties
(6)25 factors (18)4 plate (30)2 are (41)2 responses
(7)9 inhibition (19)4 response (31)2 as (42)2 restriction
(8)8 rate (20)4 was (32)2 dynamics (43)2 stunting
(9)6 factors, (21)3 cone (33)2 effects (44)2 to
(10)6 rates (22)3 curve (34)2 forest (45)2 velocities
(11)5 arrest (23)3 factor-C (35)2 hormone (46)2 were

add keyword

--- WordNet output for growth --- =>茂み, 成長, 増加, 発展, 栽培, 腫よう, 成長物 Overview of noun growth The noun growth has 7 senses (first 5 from tagged texts) 1. (37) growth, growing, maturation, development, ontogeny, ontogenesis -- ((biology) the process of an individual organism growing organically; a purely biological unfolding of events involved in an organism changing gradually from a simple to a more complex level; "he proposed an indicator of osseous development in children") 2. (20) growth -- (a progression from simpler to more complex forms; "the growth of culture") 3. (3) increase, increment, growth -- (a process of becoming larger or longer or more numerous or more important; "the increase in unemployment"; "the growth of population") 4. (3) growth -- (vegetation that has grown; "a growth of trees"; "the only growth was some salt grass") 5. (1) emergence, outgrowth, growth -- (the gradual beginning or coming forth; "figurines presage the emergence of sculpture in Greece") 6. growth -- ((pathology) an abnormal proliferation of tissue (as in a tumor)) 7. growth -- (something grown or growing; "a growth of hair") --- WordNet end ---